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Abstract—HPC platforms are capable of generating huge
amounts of metadata about different entities including jobs,
users, and files. Simple metadata, which describe the attributes
of these entities (e.g., file size, name, and permissions mode), has
been well recorded and used in current systems. However, only
a limited amount of rich metadata, which records not only the
attributes of entities but also relationships between them, are
captured in current HPC systems. Rich metadata may include
information from many sources, including users and applications,
and must be integrated into a unified framework. Collecting,
integrating, processing, and querying such a large volume of
metadata pose considerable challenges for HPC systems. In
this paper, we propose a rich metadata management approach
that unifies metadata into one generic property graph. We
argue that this approach supports not only simple metadata
operations such as directory traversal and permission validation
but also rich metadata operations such as provenance query
and security auditing. The property graph approach provides
an extensible method to store diverse metadata and presents
an opportunity to leverage rapidly evolving graph storage and
processing techniques.

I. INTRODUCTION

Rich metadata describes detailed information about differ-
ent entities such as users, applications, files, and their rela-
tionships. This information extends simple metadata, which
contains only predefined attributes about individual entities
(e.g., file name, permissions) and basic relationships (e.g.,
ownership, POSIX namespace), to a more detailed level.
Rich metadata can contain arbitrary user-defined attributes
and flexible relationships. A typical example of such rich
metadata is provenance, which records a complete history of
data elements, including the processes that generated it; the
user who started the processes; and even the environment
variables, parameters, and configuration files used during
execution [1, 2]. This level of metadata detail enables a variety
of new data management capabilities [3, 4]. For example, the
access history of users reading/writing data files can be used
to monitor users in shared supercomputer facilities; read/write
history from processes can be used to trace back suspicious
executions; and provenance capture can be used to regenerate
consistent environments for reproducible scientific results.

Existing storage systems capture simple metadata to or-
ganize files, control file access, and record access times.
Systems including Spyglass [5] and Magellan [6] have also

been proposed as extensions to store and utilize this meta-
data. However, while capturing rich metadata offers numerous
advantages, current HPC platforms still lack basic facilities to
collect, store, process, and query such metadata. At least three
challenges must be addressed.

• Storage System Pressure. A leadership supercomputer
might include millions of processes, millions of compute
cores, and billions of files. Recording data from all of
these entities could produce a large volume of data and
interfere with I/O performance.

• Efficient Processing/Querying. Once the metadata has
been collected, processing and querying it efficiently may
still be difficult. Use cases such as permission checking
require real-time results, and more complex management
activities could require extensive processing time. This
situation calls for a flexible, distributed processing capa-
bility.

• Metadata Integration. Rich metadata can be diverse. It
can contain predefined attributes and simple relationships
as well as user-defined attributes and relationships. More-
over, it may be collected from different components such
as file systems, operating systems, or schedulers. These
data sources and data formats must be integrated in order
to avoid duplication of functionality across management
tools.

Previous work has sought to unify metadata, but these ap-
proaches relied on either relational databases [7] or key-value
storage systems [8] to store the metadata. In this paper, we
propose unifying all metadata into one property graph in order
to integrate rich metadata from different sources. All storage
management services and applications can store their rich
metadata by using graph storage APIs and can access different
categories of metadata by using graph query APIs [9]. The
benefits are twofold. First, this directly solves the integration
issue by using a single representation: all services and applica-
tions will use the same interface to store or process metadata
in a single service where we can apply complex optimizations
to improve the performance further. Second, the graph model
provides a flexible method for processing and reasoning about
metadata. Complex queries are easier to express as a graph
traversal instead of as a table “join” in relational databases.
Also, by abstracting metadata into a graph, we can utilize



rapidly-evolving graph techniques to provide better access
speed, flexible query languages, and distributed processing.

This paper is organized as follows. In Section II we intro-
duce the proposed graph model for rich metadata. In Section
III we explore the attributes of such graphs by building an
example graph using the metadata collected from the Darshan
trace of a leadership-class supercomputer (Intrepid). In Section
IV we present our strategy for implementing several critical
data management functionalities based on the graph model. In
Section V we briefly introduce the relevant techniques from
the graph storage and processing community and discuss the
challenges on current graph infrastructure. In Section VI we
summarize our conclusions and briefly propose ideas for future
work.

II. GRAPH-BASED METADATA MODEL

Arguably, researchers already consider metadata as a graph.
The traditional directory-based file management constructs a
tree structure to manage files, with additional metadata stored
in inodes [10]. This tree is a graph. The provenance standard
(Open Provenance Model [11]) captures the provenance of
objects by an annotated causality graph, which is a directed
acyclic graph enriched with annotations capturing further
information.

We generalize these graphs in HPC scenarios and propose
the metadata graph model. The metadata graph is derived
from the property graph model [12], which includes vertices
that represent entities in the system, edges that show their
relationships, and properties that annotate both vertices and
edges and can store arbitrary information that users want.
Based on the entities in an HPC environment, we introduce our
strategy for mapping arbitrary rich metadata into this property
graph model.

A. Entity to Vertex

An HPC platform comprises three basic entities: users, the
running applications, and the data files. We define these as
three basic types of vertices, as follows.

• Data Object: represents the basic data unit in a storage
system. In a parallel file system, a data object would
represent a file or a directory.

• Execution: represents the execution of an application.
There are three levels of executions: Job, submitted by
the user; Processes, scheduled from one job; and Threads,
running inside one process. Different use cases require
different levels of execution detail and generate graphs
with different sizes. For simplicity, we call all these
entities as Execution entities.

• User: represents an end user of a system.
In addition to these basic entities, users can define their

own entities. For example, in a work-flow system, users can
create work-flow entities and connect them with Executions to
trace work-flow executions. Also, the system administrators
can create user group entities to include different Users and
assign privileges for them. The metadata graph allows users
to extend existed entities to build their own entities. The only

limitation is that these user-defined entities must connect with
existing entities to keep every element in the graph accessible
by traveling through the graph.

B. Relationship to Edge

Relationships between entities are shown in Table I. Each
cell shows relationships from the row identifier to the column
identifier. Each relationship will be mapped to a directed
edge in the metadata graph. In Table I, run indicates that the
user starts an execution; exe means the execution is based
on a corresponding executable file; and read/write indicates
the I/O operations from executions to data objects. Since
all the relationships are directed, traveling back from dest
nodes to src nodes will be difficult. Therefore, in the current
model we define corresponding reversed relationships for each
relationship, in order to accelerate the reversed traversal (the
wasXXBy relationships).

TABLE I
DEFAULT RELATIONSHIPS DEFINITION.

User Execution Data Object
User run

Execution wasRunBy belongs,
contains

exe,
read,
write

Data Object
exedBy,

wasReadBy,
wasWrittenBy

belongs,
contains

Table I lists several belongs/contains relationships. In the
Execution entity case, the relationship means that one job
contains multiple processes, which in turn belongs to this
job. In the Data Objects case, the relationship means that one
directory may contain multiple files or directories.

Also, users can create their own relationships based on any
two existing entities. For example, two user entities can have
a new relationships called login-together if they log into the
system roughly at the same time.

C. Property

Rich metadata also contains annotations on entities and their
relationships. In the metadata graph model, we store these as
properties, which are key-value pairs attached on vertices and
edges. Users can create their own properties on vertices and
edges, but their keys must be unique in each user’s namespace.
By isolating properties by user, we avoid global contention
among different users. Examples of properties include user
name, privilege, execution parameters, file permission, creation
time, data source agent, data quality score, and execution
environment variables.

III. METADATA GRAPH PROTOTYPE

Collecting rich metadata generally requires modification to
HPC services in order to collect data from jobs, processes,
and read/write operations [13, 14, 15]. To help understand the
attributes of a rich metadata graph in an HPC context, we
exploit Darshan trace logs as a source of rich metadata for
prototyping purposes [16].



A. Mapping Strategy

The Darshan utility is an MPI library that can be linked
to applications in order to generate I/O behavior logs during
execution [17]. Each Darshan log file represents a distinct job.
The log entries of a job contain the ID of the user who started
this job, the executable file that the job was based on, the
parameters of this execution, some environment variables, and,
most important, the file access statistics of each process (ranks)
inside this job (MPI program). Note that the collected Darshan
traces available on-line have been anonymized, storing only
the hashed values of file names, path, user names, and job
names [18].

We map Darshan logs to the metadata graph defined in
Section II. Each unique user ID indicates a User entity, each
Darshan log file represents a Job, all the ranks inside a job
correspond to the Processes, and both the executables and
data files are abstracted as Data Object entities. Darshan
does not capture directory structure, since it stores only the
hashed value of file paths. We therefore synthetically create
the simplest directory structures: data files visited by each
execution are considered under the same directory, and all
these directories accessed by one user are placed under one
directory for each user (this structure is possible only in the
graph model). Based on this mapping, we were able to import
a year’s Darshan traces (2013) from the Intrepid machine
into an example graph [18]. This collection of Darshan logs
characterizes the I/O activity of approximately 42% of all core-
hours consumed on Intrepid over the course of a year.

B. Graph Size

TABLE II
DARSHAN GRAPH SIZE AND COMPARISONS.a

Number Basic With
I/O Ranks

With
Full Ranks

With
Directory

Vertices 34.6 M 41.7 M 147.8 M 147.9 M
Edges 126.5 M 133.6 M 239.8 M 366.3 M

Road Graph
USA [19] Twitter Facebook [20] Web Page

(2002) [21]
Vertices 24 M 645 M [22] 1.28 B 2.1 B
Edges 29 M 81.4 B [23] 256 B 15 B

a M = million; B = billion; T = trillion

The first property of a metadata graph is its size. The top
half of Table II shows the graph size of our example metadata
graph in terms of vertices and edges for different levels of
detail. The first column considers the job as the Execution
entity and eliminates all process (rank) information. All I/O
behavior is associated with the Job entity. The second column
(With I/O Ranks) records the ranks that have I/O operations. In
many cases, this indicates the rank 0 process or the aggregators
in two-phase I/O. The third column (With Full Ranks) records
all the ranks as Processes entities whether they performed I/O
or not. The last column shows the graph size with the complete
synthetic directory structures and full ranks. This table clearly
shows that increasing the level of detail will dramatically
increase the graph size. The metadata graph model can be

tuned for different use cases to strike a balance between
performance overhead and metadata capability.

In the bottom half of Table II, we show several example
large-scale graphs from different fields for comparison, in-
cluding a road map graph (e.g., USA map), social network
(e.g., Twitter, Facebook), and Internet web pages (estimation
of 2002). Comparing these, we note that although the metadata
graph is large, graphs of this size are already manageable in
many existing systems.

C. Graph Structure

In addition to the graph size, the graph structure is a critical
property of metadata graphs for storage and processing. Before
discussing the graph structure, we briefly list in Table III
different entities of the example metadata graph.

TABLE III
STATISTICS OF METADATA GRAPH.

Users Jobs Proc. Ranks Files
Num 177 47,592 10,085,931 113,278,038 34,608,033

This table shows that different entities in HPC environment
may have totally different sizes; hence, the edges between
them also vary considerably. In this section, we consider them
separately. Based on the mapping strategy, the degree of a user
node indicates how many jobs each user submitted; the degree
of a job node shows how many processes it contains; and the
degree of each process node shows how many files are read
or written by it. The file node degree shows all data accesses
including execution, reading, and writing.

Figure 1 shows the node degree distributions of four basic
entities: User, Job, Process, and File (Data Object) in the
metadata graphs. In these figures, the x-axis denotes the
degree, and the y-axis shows the number of vertices that have
that degree. Both the x-axis and y-axis are log10 values. All
four entity types have the common attribute that most entities
have very small degrees and a small number of entities have
much larger degrees. Take User node as an example. A total of
177 users submitted jobs in 2013. Among them, around 10%
of the users actually submitted more than 80% of all the jobs.
We observe a similar phenomenon in the other three entities.

Many graphs have this attribute. They can be described by
using the skewed power-law degree distribution [24], which
means that most vertices have relatively few neighbors, while
a few vertices have many more neighbors. We use the function
P(d) ∝ d−α to describe the probability that a vertex has
degree d in such graphs. Here, α is a constant parameter of
the distribution known as the exponent or scaling parameter.

From Fig. 1, we speculate that some of the entities fit the
power-law distribution. We therefore plot three lines of the
power-law distribution with different α values in each figure
(we eliminate User because there are only 177 user samples,
which is too few to visualize the distribution). We observe
that the File nodes come closer to the power-law degree
distribution as Fig. 1(d) shows. This observation is intuitive
because of locality; most files are seldom accessed, but a small
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(a) User node degree
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(b) Job node degree
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(c) Process node degree
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Fig. 1. Node degree for different entities.

subset of files are visited frequently. The Process and Job
degree distributions do not fit the power-law distribution quite
as well. For Process (Fig. 1(c)), there are not enough low-
degree processes nodes; and for Job (Fig. 1(b)), the distribution
scatters more randomly than for the other two.

We plan to investigate whether additional use cases fit the
power-law distribution and whether adding or deleting nodes
or edges will change this attribute based on the statistical an-
alytical strategy introduced by Clauset et al. [25]. Preliminary
results still strongly indicate that the power-law distribution
is an accurate estimation for these basic entities in metadata
graphs. These results play an important role for our future
design of graph partition and storage strategy. Moreover, they
serve as a basis for creating synthetic graphs for evaluation,
since collecting large-scale rich metadata in running HPC
systems is an open challenge.

IV. USE CASES FOR THE METADATA GRAPH

Unifying rich metadata into one graph turns many appealing
data management functionalities into graph traversal opera-
tions or graph queries. In this section, we show how to map
use cases from real-world scenarios to graph operations.

A. User Audit

Data auditing is critical in large computing facilities where
different users share the same cluster. It requires detailed user-
to-file access history for future security checks. In the metadata
graph, we already collect the run relationships between Users
and Executions, and the read/write relationships between Exe-
cutions and Data Objects will record the file access history (all
those relationships will contain properties such as timestamps).
In this configuration, we can (for example) find all the files
that were accessed by a specific user in time frame [ts, te] by
using graph operations as follows: (1) locate the given user
from the metadata graph; (2) travel through run edges from
this User node to Execution nodes; (3) filter executions based

on the given time frame; and (4) travel through the read edges
from the remained executions to the final files. (

B. Hierarchical Data Traversal

Hierarchical data organization is used to present a logical
layout of data sets to users. The simplest example of hierarchi-
cal data traversal is traditional directory namespace traveling.
In the metadata graph model, we abstract both directories
and files as Data Object entities. The belongs and contains
relationships between different Data Objects represent the
relationships between files and directories. Given an absolute
path, locating a file translates into traversing contains edges
from a Data Object node and filtering edges as needed.

Metadata graphs also offer the potential to leverage existing
techniques for scalable data structure traversal. Traditional
POSIX directories often do not perform well for HPC systems
where millions of files may be stored under one directory.
Previous work such as Giga+ [26] has been proposed to
improve performance by distributing directory metadata across
multiple servers. In a graph model, this becomes a graph
partition problem, which is already studied extensively in the
literature [27, 28, 29].

In addition to traditional POSIX-style files and directories,
semantic data management would be another hierarchical
traversal use case. Scientists could manage their data in a
semantic way, such as arranging all the inputs and outputs
of a single simulation execution together. Traditionally, doing
so requires careful file naming and directory placement. In
a metadata graph, we can simply create new entity named
Simulation and connect it with the Data Object. Data can be
organized across multiple dimensions simultaneously by using
this approach.

C. Provenance Support

Provenance has a wide range of use cases, such as data shar-
ing, reproducibility, and work-flow management. As a superset
of provenance, the metadata graph model naturally supports
these use cases. In this subsection, we borrow the problem
from the first Provenance Challenge as an example [30].

In this challenge, an example work-flow was provided as
the basis. A workable provenance system should be able to
represent the work-flow and all the relevant provenance and,
most important, be able to answer predefined queries. Based
on our proposed graph model, it is straightforward to abstract
the work-flow as series of executions run by the same user,
and each execution reads files (Data Objects) and generates
outputs for applications in the next phase. Based on this work-
flow, the provenance system needs to answer queries such
as Find the execution whose model is AlignWarp and inputs
have annotation [‘center’:‘UChicago’]. This can be expressed
in a metadata graph as follows: (1) query all the Execution
vertices, which have exe out-edge pointing to a Data Object
named ‘AlignWarp’; (2) start from all those Execution vertices
and filter out the executions whose property “center” is not
“UChicago.”



A notable advantage of the metadata graph when compared
with a traditional provenance system is that it allows users to
cross-reference different categories of metadata in an unified
way. If the provenance query needs other metadata (e.g., file
size, permission mode, or user group information), processing
that metadata in a unified graph will be more efficient and
straightforward.

V. GRAPH FACILITIES AND CHALLENGES

Graph databases and distributed processing frameworks are
two basic facilities to support our metadata graph model.
Although a large number of these facilities exist, challenges
remain because of the specific requirements of storing, pro-
cessing, and querying metadata graphs of this scale.

A. Graph Databases

The graph databases are designed to cover the requirements
of complex graph-based relationships, which are not well-
suited to traditional relational databases. The past few years
has seen an increasing number of graph database imple-
mentations, including AllegroGraph, DEX, G-Store, Hyper-
GraphDB, InfinitGraphDB, Neo4j, and Titan [31, 32, 33,
34, 35, 36, 37]. They can be categorized based on different
metrics. Based on the storage device, there are in-memory
databases and disk-based databases. Based on the supported
graph data structure, there are simple graphs databases, hy-
pergraphs databases, and property graphs databases.1 Based
on distributed deployment, there are single server databases,
high availability databases, and distributed databases.

A metadata graph would require support for property graphs
and distributed disk-based storage (since an HPC storage
system graph is likely to be too large to fit in memory). Several
implementations satisfy such requirements, such as Titan,
DEX, and Neo4j. Performance is an important consideration
as well. In a distributed environment, updates across servers
will significantly reduce performance, so we need to consider
the structure of the metadata graph and provide an opti-
mized storage layout. Another performance challenge is graph
traversal. In fact, traveling through a metadata graph usually
includes applying filters and computations on properties during
traveling, as in the provenance example shown in Section IV-C.
Since these properties are too big to be fully cached in
memory, we expect to load them from persistent devices. An
intelligent cache strategy could help mitigate random seek
costs in this scenario.

B. Graph Processing

In addition to graph databases, graph processing frameworks
can be used to perform computation or queries on graphs
in a distributed way. Typical examples of these frameworks
include Giraph [39], which was designed and implemented
based on the Pregel computing model [40]; GraphX [41],

1Here, the simple graph indicates a graph defined as a set of nodes
connected by weighted edges. Hypergraphs extends simple graphs by allowing
an edge to relate an arbitrary number of nodes [38]. A property graph indicates
a graph where nodes and edges contain properties. This property graph is the
basis of our proposed metadata graph model.

which was based on the Spark computing framework [42];
GraphLab [43], and X-Stream [44]. These processing frame-
works are a complement to the querying and searching ca-
pability provided by graph databases. For example, we can
run community discovery algorithms on a metadata graph to
find the “closely” related data files. The results can be used
to optimize physical placements for better I/O performance.
These algorithms may iteratively traverse a graph over an
extended period of time.

However, most these distributed graph processing frame-
works were designed to work on unstructured graphs, which
are usually simply stored as a plain file in adjacency list
formats in a general storage back-end. There is a gap from
deploying graph algorithms in these plain graph formats to
running these algorithms on a graph database, which usually
has a specific, optimized storage layout for querying and
searching.

VI. CONCLUSION AND FUTURE WORK

In this paper, we proposed an idea of unifying rich metadata
in a HPC platform into a property graph model, which supports
a wide range of metadata management functionalities in a
simple but efficient way. By prototyping such a metadata graph
from Darshan I/O traces of a real-world leading supercom-
puter, we explored the attributes of such graphs. Based on the
prototype, we introduce existing graph facilities and discuss
their remained challenges for storing and processing the meta-
data graph. We discuss the benefits of unifying HPC metadata
into a graph, and we present the feasibility of implementing
such a graph in current HPC platforms. Future work will
include implementing such a platform with optimized graph
facilities in order to provide a practical metadata solution for
exascale data management systems.
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